N-Channel FREDFET

Power MOS $8^{T M}$ is a high speed, high voltage N -channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr}, soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $\mathrm{C}_{\text {rss }} / \mathrm{C}_{\text {iss }}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- Fast switching with low EMI
- Low $\mathrm{t}_{\text {rr }}$ for high reliability
- Ultra low $\mathrm{C}_{\text {rss }}$ for improved noise immunity
- Low gate charge
- Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- Single and two switch forward
- Flyback
Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I_{D}	Continuous Drain Current $@ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	23	
	Continuous Drain Current ${ }^{\circ} \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	15	A
I_{DM}	Pulsed Drain Current ${ }^{(1)}$	140	
$\mathrm{~V}_{\text {GS }}$	Gate-Source Voltage	± 30	V
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy ${ }^{(2)}$	2165	mJ
$\mathrm{I}_{\text {AR }}$	Avalanche Current, Repetitive or Non-Repetitive	18	A

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Typ	Max	Unit
P_{D}	Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			545	W
$\mathrm{R}_{\text {өJC }}$	Junction to Case Thermal Resistance			0.23	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \text { ¢ }}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11		
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55		150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {Isolation }}$	RMS Voltage ($50-60 \mathrm{hHz}$ Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V
W_{T}	Package Weight		1.03		oz
			29.2		g
Torque	Terminals and Mounting Screws.			10	in.lbf
				1.1	$\mathrm{N} \cdot \mathrm{m}$

Static Characteristics
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified
APT22F100J

Symbol	Parameter	Test Conditions		Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{BR}(\mathrm{DSS})}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		1000			V
$\Delta \mathrm{V}_{\text {BR(DSS }} / \Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temperature Coefficient	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$			1.15		$\mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Drain-Source On Resistance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~A}$			0.32	0.38	Ω
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA}$		2.5	4	5	V
$\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})} / \Delta \mathrm{T}_{\mathrm{J}}$	Threshold Voltage Temperature Coefficient				-10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$I_{\text {DSS }}$	Zero Gate Voltage Drain Current	$V_{\text {DS }}=1000 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			250	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			1000	
$\mathrm{I}_{\text {GSS }}$	Gate-Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}$				± 100	nA

Dynamic Characteristics

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
g_{fs}	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~A}$		39		S
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{gathered} V_{G S}=0 V, V_{D S}=25 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		9835		pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			130		
$\mathrm{C}_{\text {oss }}$	Output Capacitance			825		
$\mathrm{C}_{\mathrm{o}(\mathrm{cr})}{ }^{4}$	Effective Output Capacitance, Charge Related	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \text { to } 667 \mathrm{~V}$		335		
$\mathrm{C}_{\text {o(er) }}{ }^{\text {(5) }}$	Effective Output Capacitance, Energy Related			170		
Q_{g}	Total Gate Charge	$\begin{gathered} V_{G S}=0 \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~A}, \\ V_{D S}=500 \mathrm{~V} \end{gathered}$		305		$n C$
$Q_{\text {gs }}$	Gate-Source Charge			55		
Q_{gd}	Gate-Drain Charge			145		
$t_{\text {d(on) }}$	Turn-On Delay Time	Resistive Switching$\begin{gathered} V_{D D}=667 \mathrm{~V}, I_{D}=18 \mathrm{~A} \\ R_{G}=2.2 \Omega^{\ominus}, V_{G G}=15 \mathrm{~V} \end{gathered}$		44		ns
t_{r}	Current Rise Time			40		
$t_{\text {d(off) }}$	Turn-Off Delay Time			150		
t_{f}	Current Fall Time			38		

Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions		Min	Typ	Max	Unit
I_{s}	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n junction diode (body diode)				23	A
$\mathrm{I}_{\text {SM }}$	Pulsed Source Current (Body Diode) ${ }^{\text {(1) }}$					140	
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	$\mathrm{I}_{\text {SD }}=18 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {GS }}=0 \mathrm{~V}$				1.1	V
$\mathrm{trr}_{\text {r }}$	Reverse Recovery Time	$\begin{gathered} \mathrm{I}_{\mathrm{SD}}=18 \mathrm{~A}^{(3)} \\ \mathrm{v}_{\mathrm{DD}}=100 \mathrm{~V} \\ \mathrm{di}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			300	ns
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			650	
$Q_{r r}$	Reverse Recovery Charge		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1.61		$\mu \mathrm{C}$
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		4.21		
$I_{\text {rrm }}$	Reverse Recovery Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		11.6		A
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		15.8		
dv/dt	Peak Recovery dv/dt	$\begin{gathered} \mathrm{I}_{\mathrm{SD}} \leq 18 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 1000 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{DD}}=667 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{gathered}$				25	V/ns

(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
(2) Starting at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=13.36 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{I}_{\mathrm{AS}}=18 \mathrm{~A}$.
(3) Pulse test: Pulse Width $<380 \mu \mathrm{~s}$, duty cycle $<2 \%$.
(4) $\mathrm{C}_{\mathrm{O}(\mathrm{cr})}$ is defined as a fixed capacitance with the same stored charge as $\mathrm{C}_{\mathrm{OSS}}$ with $\mathrm{V}_{\mathrm{DS}}=67 \%$ of $\mathrm{V}_{\text {(BR)DSS }}$
(5) $\mathrm{C}_{\mathrm{o}(\text { (er) }}$ is defined as a fixed capacitance with the same stored energy as $\mathrm{C}_{\mathrm{OSS}}$ with $\mathrm{V}_{\mathrm{DS}}=67 \%$ of $\mathrm{V}_{(B R) D S S}$. To calculate $\mathrm{C}_{\text {o(er) }}$ for any value of V_{DS} less than $\mathrm{V}_{(\mathrm{BR}) \mathrm{DSs} \text {, }}$ use this equation: $\mathrm{C}_{\mathrm{o}(\mathrm{er})}=-2.85 \mathrm{E}-7 / \mathrm{V}_{\mathrm{DS}}{ }^{\wedge} 2+5.04 \mathrm{E}-8 / \mathrm{V}_{\mathrm{DS}}+9.75 \mathrm{E}-11$.
(6) R_{G} is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

[^0]

Figure 1，Output Characteristics

Figure 3， $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs Junction Temperature

Figure 5，Gain vs Drain Current
（ \wedge ）ヨロャュา

Figure 2，Output Characteristics

Figure 4，Transfer Characteristics

Figure 6，Capacitance vs Drain－to－Source Voltage

Figure 8，Reverse Drain Current vs Source－to－Drain Voltage

Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)

[^0]: Microsemi reserves the right to change, without notice, the specifications and information contained herein.

