




1000V, 23A, 0.38 $\Omega$  Max,  $t_{rr} \le$ 300ns

# N-Channel FREDFET

Power MOS  $8^{\text{TM}}$  is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced  $t_{\text{rr}}$ , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of  $C_{\text{rss}}/C_{\text{iss}}$  result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.



### **FEATURES**

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C<sub>rss</sub> for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

### **TYPICAL APPLICATIONS**

- ZVS phase shifted and other full bridge
- · Half bridge
- PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

**Absolute Maximum Ratings** 

| Symbol          | Parameter                                         | Ratings | Unit |
|-----------------|---------------------------------------------------|---------|------|
|                 | Continuous Drain Current @ T <sub>C</sub> = 25°C  | 23      |      |
| 'D              | Continuous Drain Current @ T <sub>C</sub> = 100°C | 15      | Α    |
| I <sub>DM</sub> | Pulsed Drain Current <sup>①</sup>                 | 140     |      |
| V <sub>GS</sub> | Gate-Source Voltage                               | ±30     | V    |
| E <sub>AS</sub> | Single Pulse Avalanche Energy®                    | 2165    | mJ   |
| I <sub>AR</sub> | Avalanche Current, Repetitive or Non-Repetitive   | 18      | Α    |

#### **Thermal and Mechanical Characteristics**

| Symbol                 | Characteristic                                                                        | Min  | Тур  | Max       | Unit   |  |
|------------------------|---------------------------------------------------------------------------------------|------|------|-----------|--------|--|
| P <sub>D</sub>         | Total Power Dissipation @ T <sub>C</sub> = 25°C                                       |      |      | 545       | W      |  |
| $R_{\theta JC}$        | Junction to Case Thermal Resistance                                                   |      |      | 0.23 °C/W |        |  |
| $R_{\theta CS}$        | Case to Sink Thermal Resistance, Flat, Greased Surface                                |      | 0.11 |           | C/VV   |  |
| $T_J$ , $T_{STG}$      | Operating and Storage Junction Temperature Range                                      | -55  |      | 150       | °C     |  |
| V <sub>Isolation</sub> | RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) | 2500 |      |           | V      |  |
| W <sub>T</sub>         | Package Weight                                                                        |      | 1.03 |           | OZ     |  |
|                        |                                                                                       |      | 29.2 |           | g      |  |
| Torque                 | Terminals and Mounting Screws.                                                        |      |      | 10        | in∙lbf |  |
|                        |                                                                                       |      |      | 1.1       | N⋅m    |  |

#### **Static Characteristics**

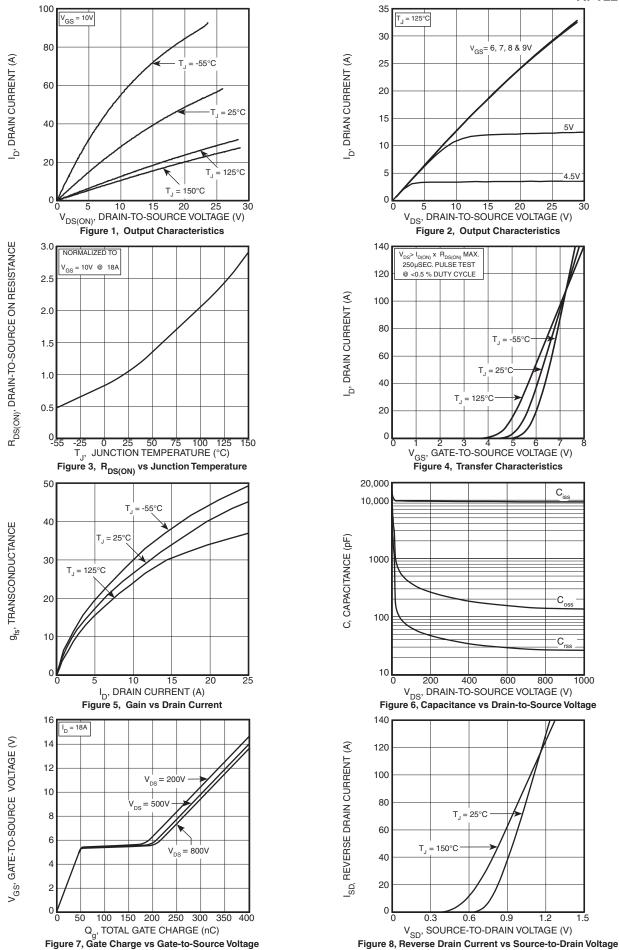
## T<sub>J</sub> = 25°C unless otherwise specified

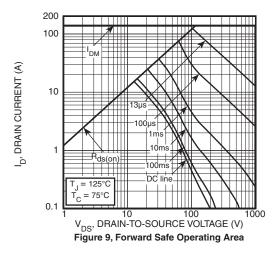
| ΑF | T22 | F1 | 00 | J |
|----|-----|----|----|---|
|----|-----|----|----|---|

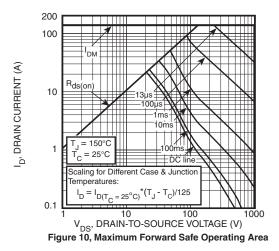
| Symbol                            | Parameter                                 | Test Conditions                             | Min  | Тур  | Max  | Unit  |
|-----------------------------------|-------------------------------------------|---------------------------------------------|------|------|------|-------|
| V <sub>BR(DSS)</sub>              | Drain-Source Breakdown Voltage            | $V_{GS} = 0V, I_{D} = 250\mu A$             | 1000 |      |      | V     |
| $\Delta V_{BR(DSS)}/\Delta T_{J}$ | Breakdown Voltage Temperature Coefficient | Reference to 25°C, I <sub>D</sub> = 250μA   |      | 1.15 |      | V/°C  |
| R <sub>DS(on)</sub>               | Drain-Source On Resistance®               | $V_{GS} = 10V, I_{D} = 18A$                 |      | 0.32 | 0.38 | Ω     |
| V <sub>GS(th)</sub>               | Gate-Source Threshold Voltage             | \/ -\/   -0.5m/                             | 2.5  | 4    | 5    | V     |
| $\Delta V_{GS(th)}/\Delta T_{J}$  | Threshold Voltage Temperature Coefficient | $V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$      |      | -10  |      | mV/°C |
|                                   | Zero Gate Voltage Drain Current           | $V_{DS} = 1000V \qquad T_{J} = 25^{\circ}C$ |      |      | 250  | μA    |
| DSS                               | Zero date voltage Diairi Guirent          | $V_{GS} = 0V$ $T_J = 125^{\circ}C$          |      |      | 1000 | μΛ    |
| I <sub>GSS</sub>                  | Gate-Source Leakage Current               | $V_{GS} = \pm 30V$                          |      |      | ±100 | nA    |

# **Dvnamic Characteristics**

## T<sub>.1</sub> = 25°C unless otherwise specified

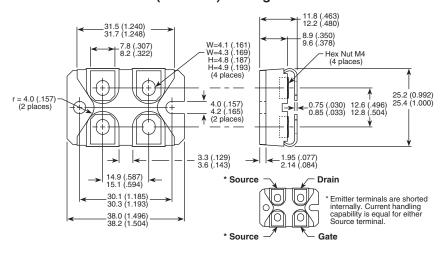

| Ty = 25 o unless otherwise specified |                                              |                                                            |     |      |     |      |  |
|--------------------------------------|----------------------------------------------|------------------------------------------------------------|-----|------|-----|------|--|
| Symbol                               | Parameter                                    | Test Conditions                                            | Min | Тур  | Max | Unit |  |
| 9 <sub>fs</sub>                      | Forward Transconductance                     | V <sub>DS</sub> = 50V, I <sub>D</sub> = 18A                |     | 39   |     | S    |  |
| C <sub>iss</sub>                     | Input Capacitance                            | V 0V V 0FV                                                 |     | 9835 |     |      |  |
| C <sub>rss</sub>                     | Reverse Transfer Capacitance                 | $V_{GS} = 0V, V_{DS} = 25V$<br>f = 1MHz                    |     | 130  |     |      |  |
| C <sub>oss</sub>                     | Output Capacitance                           | 7 - 111112                                                 |     | 825  |     |      |  |
| C <sub>o(cr)</sub> ④                 | Effective Output Capacitance, Charge Related | $V_{GS} = 0V, V_{DS} = 0V \text{ to } 667V$                |     | 335  |     | pF   |  |
| C <sub>o(er)</sub> ⑤                 | Effective Output Capacitance, Energy Related |                                                            |     | 170  |     |      |  |
| $Q_g$                                | Total Gate Charge                            | V 04-40V 1 40A                                             |     | 305  |     |      |  |
| $Q_{gs}$                             | Gate-Source Charge                           | $V_{GS} = 0 \text{ to } 10V, I_{D} = 18A,$ $V_{DS} = 500V$ |     | 55   |     | nC   |  |
| Q <sub>gd</sub>                      | Gate-Drain Charge                            | V <sub>DS</sub> = 500V                                     |     | 145  |     |      |  |
| t <sub>d(on)</sub>                   | Turn-On Delay Time                           | Resistive Switching                                        |     | 44   |     |      |  |
| t <sub>r</sub>                       | Current Rise Time                            | V <sub>DD</sub> = 667V, I <sub>D</sub> = 18A               |     | 40   |     | ne   |  |
| t <sub>d(off)</sub>                  | Turn-Off Delay Time                          | $R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$        |     | 150  |     | ns   |  |
| t <sub>f</sub>                       | Current Fall Time                            |                                                            |     | 38   |     |      |  |


#### Source-Drain Diode Characteristics


| Symbol           | Parameter                                       | Test Conditions                                                                                                             | Min | Тур          | Max | Unit |
|------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|--------------|-----|------|
| Is               | Continuous Source Current (Body Diode)          | MOSFET symbol showing the                                                                                                   |     |              | 23  | А    |
| I <sub>SM</sub>  | Pulsed Source Current (Body Diode) <sup>①</sup> | integral reverse p-n<br>junction diode<br>(body diode)                                                                      |     |              | 140 |      |
| V <sub>SD</sub>  | Diode Forward Voltage                           | $I_{SD} = 18A, T_{J} = 25^{\circ}C, V_{GS} = 0V$                                                                            |     |              | 1.1 | V    |
| t <sub>rr</sub>  | Reverse Recovery Time                           | T <sub>J</sub> = 25°C                                                                                                       |     |              | 300 | ns   |
| Q <sub>rr</sub>  | Reverse Recovery Charge                         | $I_{SD} = 18A^{\textcircled{3}}$ $T_{J} = 125^{\circ}C$ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$ $T_{J} = 125^{\circ}C$ |     | 1.61<br>4.21 | 650 | μC   |
| I <sub>rrm</sub> | Reverse Recovery Current                        | $di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$                                                          |     | 11.6<br>15.8 |     | А    |
| dv/dt            | Peak Recovery dv/dt                             | $I_{SD} \le 18A$ , di/dt $\le 1000A/\mu s$ , $V_{DD} = 667V$ , $T_J = 125^{\circ}C$                                         |     |              | 25  | V/ns |


- (1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at  $T_J = 25$ °C, L = 13.36mH,  $R_G = 25\Omega$ ,  $I_{AS} = 18$ A.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- C<sub>o(cr)</sub> is defined as a fixed capacitance with the same stored charge as C<sub>OSS</sub> with V<sub>DS</sub> = 67% of V<sub>(BR)DSS</sub>.
   C<sub>o(er)</sub> is defined as a fixed capacitance with the same stored energy as C<sub>OSS</sub> with V<sub>DS</sub> = 67% of V<sub>(BR)DSS</sub>. To calculate C<sub>o(er)</sub> for any value of V<sub>DS</sub> less than V<sub>(BR)DSS</sub>, use this equation: C<sub>o(er)</sub> = -2.85E-7/V<sub>DS</sub>^2 + 5.04E-8/V<sub>DS</sub> + 9.75E-11.
- (6) R<sub>G</sub> is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.










## SOT-227 (ISOTOP®) Package Outline



Dimensions in Millimeters and (Inches)